[해외논문] A Novel Hybrid Deep Neural Network Model to Predict the Refrigerant Charge Amount of Heat Pumps

구분 : 논문  |  저자 : Jun Kwon Hwang, Patrick Nzivugira Duhirwe , Geun Young Yun , Sukho Lee , Hyeongjoon Seo , Inhan Kim, Mat Santamouris

성과코드 2-양-A-11-1 연구기관 경희대학교
성과명 A Novel Hybrid Deep Neural Network Model to Predict the Refrigerant Charge Amount of Heat Pumps 버전
성과형식 연구기관 연락처 jungsikchoi@hanyang.ac.kr
다운로드
다운로드 링크
URL 연결
성과정의
성과구성 Abstract: Improper refrigerant charge amount (RCA) is a recurring fault in electric heat pump (EHP)
systems. Because EHP systems show their best performance at optimum charge, predicting the RCA
is important. There has been considerable development of data-driven techniques for predicting RCA;
however, the current data-driven approaches for estimating RCA su_er from poor generalization and
overfitting. This study presents a hybrid deep neural network (DNN) model that combines both a
basic DNN model and a thermodynamic model to counter the abovementioned challenges of existing
data-driven approaches. The data for designing models were collected from two EHP systems with
di_erent specifications, which were used for the training and testing of models. In addition to the data
obtained using the basic DNN model, the hybrid DNN model uses the thermodynamic properties
as a thermodynamic model. The testing results show that the hybrid DNN model has a prediction
performance of 93%, which is 21% higher than that of the basic DNN model. Furthermore, for model
training and model testing, the hybrid DNN model has a 6% prediction performance di_erence,
indicating its reliable generalization capabilities. To summarize, the hybrid DNN model improves
data-driven approaches and can be used for designing e_cient and energy-saving EHP systems.


Keywords: building energy; energy use; energy efficiency; prediction model; deep neural network; electric heat pump; refrigerant charge amount
사용주체 사용단계
사용용도
사용환경
적용된 KBIMS

List of Articles
번호 구분 분류 제목 저자 첨부파일
23 소프트웨어 3세부 [소프트웨어]스캔투빔 반자동 객체 생성 프로그램 두올테크
22 국내학술발표 3세부 SBF(Scan-BIM-FM) 기반 스마트 시설물 관리 강태욱
21 국내논문 3세부 건축물 유지관리를 위한 COBie기반 건축정보교환체계 프레임웍 연구 강태욱
20 연구홍보 2세부 [연구홍보] 개방형BIM 기반의 건축설계 적법성 평가 자동화 기술 및 응용기술 개발 성과 홍보 연세대학교
19 논문 2세부 [해외논문(SCI급)] Deep learning-based extraction of predicate-argument structure (PAS) in building design rule sentences Jaeyeol Song, Jin-Kook Lee, Jungsik Choi, Inhan Kim
18 논문 2세부 [국내논문] 기계학습활용 건축설계지침 문장 내 논리규칙 구성요소 자동추출과 설계품질 검토도구 연계방안(심사완료) 김진성, 송재열, 이진국
17 논문 2세부 [국내논문] 모바일 BIM기반 현장 품질관리 지원도구 송경욱, 유정호, 김경
16 논문 2세부 [해외논문 (SCI)] Longitudinal Study on Construction Organization’s BIM Acceptance Seulki Lee, Jungho Yu
» 논문 2세부 [해외논문] A Novel Hybrid Deep Neural Network Model to Predict the Refrigerant Charge Amount of Heat Pumps Jun Kwon Hwang, Patrick Nzivugira Duhirwe , Geun Young Yun , Sukho Lee , Hyeongjoon Seo , Inhan Kim, Mat Santamouris
14 논문 2세부 [국내논문] 배관 ISO도면 파일 기반 ARVR모델 생성 기법 연구 이정민, 이경호, 한영수
Board Pagination Prev 1 2 3 4 5 6 7 8 Next
/ 8