[해외논문] A Novel Hybrid Deep Neural Network Model to Predict the Refrigerant Charge Amount of Heat Pumps

구분 : 논문  |  저자 : Jun Kwon Hwang, Patrick Nzivugira Duhirwe , Geun Young Yun , Sukho Lee , Hyeongjoon Seo , Inhan Kim, Mat Santamouris

성과코드 2-양-A-11-1 연구기관 경희대학교
성과명 A Novel Hybrid Deep Neural Network Model to Predict the Refrigerant Charge Amount of Heat Pumps 버전
성과형식 연구기관 연락처 jungsikchoi@hanyang.ac.kr
다운로드
다운로드 링크
URL 연결
성과정의
성과구성 Abstract: Improper refrigerant charge amount (RCA) is a recurring fault in electric heat pump (EHP)
systems. Because EHP systems show their best performance at optimum charge, predicting the RCA
is important. There has been considerable development of data-driven techniques for predicting RCA;
however, the current data-driven approaches for estimating RCA su_er from poor generalization and
overfitting. This study presents a hybrid deep neural network (DNN) model that combines both a
basic DNN model and a thermodynamic model to counter the abovementioned challenges of existing
data-driven approaches. The data for designing models were collected from two EHP systems with
di_erent specifications, which were used for the training and testing of models. In addition to the data
obtained using the basic DNN model, the hybrid DNN model uses the thermodynamic properties
as a thermodynamic model. The testing results show that the hybrid DNN model has a prediction
performance of 93%, which is 21% higher than that of the basic DNN model. Furthermore, for model
training and model testing, the hybrid DNN model has a 6% prediction performance di_erence,
indicating its reliable generalization capabilities. To summarize, the hybrid DNN model improves
data-driven approaches and can be used for designing e_cient and energy-saving EHP systems.


Keywords: building energy; energy use; energy efficiency; prediction model; deep neural network; electric heat pump; refrigerant charge amount
사용주체 사용단계
사용용도
사용환경
적용된 KBIMS

List of Articles
번호 구분 분류 제목 저자 첨부파일
63 논문 2세부 [국내논문] 중국 베이징시 고층아파트 단지 거주자의 공동체 의식을 지원하는 공용공간에 관한 연구 동효원, 김미정
62 논문 2세부 해외논문(SCI급)] The Impact of Workplace Disability Facilities on Job Retention Wishes among People with Physical Disabilities in South Korea Eun Jung Kim, Inhan Kim, Mi Jeong Kim
61 논문 2세부 [해외논문(SCI)] Fuzzy-inference-based decision-making method for the systematization of statistical process capability control Young-Hwan Choi, Gun-Yeol Na, Jeongsam Yang
60 논문 2세부 [국내논문] 배관 ISO도면 파일 기반 ARVR모델 생성 기법 연구 이정민, 이경호, 한영수
» 논문 2세부 [해외논문] A Novel Hybrid Deep Neural Network Model to Predict the Refrigerant Charge Amount of Heat Pumps Jun Kwon Hwang, Patrick Nzivugira Duhirwe , Geun Young Yun , Sukho Lee , Hyeongjoon Seo , Inhan Kim, Mat Santamouris
58 논문 2세부 [해외논문 (SCI)] Longitudinal Study on Construction Organization’s BIM Acceptance Seulki Lee, Jungho Yu
57 논문 2세부 [국내논문] 모바일 BIM기반 현장 품질관리 지원도구 송경욱, 유정호, 김경
56 논문 2세부 [국내논문] 기계학습활용 건축설계지침 문장 내 논리규칙 구성요소 자동추출과 설계품질 검토도구 연계방안(심사완료) 김진성, 송재열, 이진국
55 논문 2세부 [해외논문(SCI급)] Deep learning-based extraction of predicate-argument structure (PAS) in building design rule sentences Jaeyeol Song, Jin-Kook Lee, Jungsik Choi, Inhan Kim
54 연구홍보 2세부 [연구홍보] 개방형BIM 기반의 건축설계 적법성 평가 자동화 기술 및 응용기술 개발 성과 홍보 연세대학교
Board Pagination Prev 1 2 3 4 5 6 7 8 Next
/ 8